A Comparison of Model-Assisted Estimators to Infer Land Cover/Use Class Area Using Satellite Imagery

نویسندگان

  • Yizhan Li
  • Xiufang Zhu
  • Yaozhong Pan
  • Jianyu Gu
  • Anzhou Zhao
  • Xianfeng Liu
چکیده

Remote sensing provides timely, economic, and objective data over a large area and has become the main data source for land cover/use area estimation. However, the classification results cannot be directly used to calculate the area of a given land cover/use type because of classification errors. The main purpose of this study is to explore the performance and stability of several model-assisted estimators in various overall accuracies of classification and sampling fractions. In this study, the confusion matrix calibration direct estimator, confusion matrix calibration inverse estimator, ratio estimator, and simple regression estimator were implemented to infer the areas of several land cover classes using simple random sampling without replacement in two experiments: a case study using simulation data based on RapidEye images and that using actual RapidEye and Huan Jing (HJ)-1A images. In addition, the simple estimator using a simple random sample without replacement was regarded as a basic estimator. The comparison results suggested that the confusion matrix calibration estimators, ratio estimator, and simple regression estimator could provide more accurate and stable estimates than the simple random sampling estimator. In addition, high-quality classification data played a positive role in the estimation, and the confusion matrix inverse estimators were more sensitive to the classification accuracy. In the simulated experiment, the average deviation of a confusion matrix calibration inverse estimator decreased by about 0.195 with the increasing overall accuracy of classification; otherwise, the variation of the other three model-assisted estimators was 0.102. Moreover, the simple regression estimator was slightly superior to the confusion matrix calibration OPEN ACCESS Remote Sens. 2014, 6 8905 estimators and required fewer sample units under acceptable classification accuracy levels of 70%–90%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing the Capability of Sentinel 2 and Landsat 8 Satellite Imagery in Land Use and Land Cover Mapping Using Pixel-based and Object-based Classification Methods

Introduction: Having accurate and up-to-date information on the status of land use and land cover change is a key point to protecting natural resources, sustainable agriculture management and urban development. Preparing the land cover and land use maps with traditional methods is usually time and cost consuming. Nowadays satellite imagery provides the possibility to prepare these maps in less ...

متن کامل

Validation of Volunteered Geographic Information Landuse Change Using Satellite Imagery

Land use change monitoring is one of the main concerns of managers and urban planners due to human activities and unbalanced physical development in urban areas. In this paper, a combination of remote sensing data and volunteered geographic information was used to assess the quality of volunteered geographic information on land use and land cover changes monitoring. For this purpose, the ORBVIE...

متن کامل

assessment of land-cover change in South part of Lake Urmia using satellite imagery

Study of land use/cover changes is widely used in environmental planning. During the last decade, growing increase of aridity in Uromiyah Basin has become a major regional and even national problem. The purpose of this study is to reveal the changes in land use/cover in the southern and southeastern parts of the basin with using 2 images for month of July of 2000 to 2017. Landsat TM and OLI dat...

متن کامل

Dust source mapping using satellite imagery and machine learning models

Predicting dust sources area and determining the affecting factors is necessary in order to prioritize management and practice deal with desertification due to wind erosion in arid areas. Therefore, this study aimed to evaluate the application of three machine learning models (including generalized linear model, artificial neural network, random forest) to predict the vulnerability of dust cent...

متن کامل

Mapping Soil Organic Carbon Using IRS-AWIFS Satellite Imagery (Case Study: Dehaghan Rangeland, Isfahan, IRAN)

Soil organic matter has positive consequences eht rof quality and productivityof soil and also environment, agricultural and biological sustainability and conservation ofbiodiversity and soil. Organic matter plays an important role in the physical and chemicalprocesses of soil and thus, it is of a great effect on the spectral characteristics of soil. Thisstudy was done in order to develop the m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Remote Sensing

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2014